Greetings From The EdJ

Greetings From The EdJ

At the moment, this site is mainly a place I can direct friends and family to so they can easily download a remote support tool so I can avoid the time and expense of making a house call to help with computer problems.

Now that I’m retired, I hope to start giving this site some more attention and expand the content.

Slow and Steady…

I’ve been retired for 2 months and finally got around to posting something. I was bitten by the 3D Printing bug about 4 years ago and after watching countless YouTube videos on the subject, bought my first printer in January of 2018.

Recently, I signed up for an online class to help polish my 3D design skills. I primarily use Fusion 360, an excellent tool for CAD/CAM design developed by Autodesk. Autodesk is kind enough to let hobbyist users like me use the software for free. If you’re interested, you can visit Autodeck.com to check out the free version of Fusion 360.

You can learn more about the classes I’m taking at www.desktopmakes.com. The instructor, Vladimir Mariano, also has a YouTube channel where he shares Fusion 360 tips as well and short tutorials on designing models for 3D printing. If you’re interested in 3D printing or 3D design, I highly recommend you check out his channel! He has a great teaching style and the content is excellent. His content is as good or better than most and I hope his followers grow so he can continue to provide quality content for nerds like me. His self-paced online courses are really well done and a great way to learn (and remember) best practices for a complex program like Fusion 360.

Taking the online class inspired me to publish my first article – a tip for using parameters in Fusion 360. I hope to continue to grow this site with tips and advice on a variety of topics.

Thanks for stopping by.

Fusion 360 Tip – Parameters with Rectangular Patterns

Overview

Note: Although this is published, it is still a work-in-progress.

It’s possible to use parameters with rectangular patterns in a way that effectively combines the “spacing” and “extent” options and automatically calculate the repeat count.

Example Scenario

An entertainment center has storage designed for VHS tapes. The tapes are stored on a shelf that has plastic spacers with slots wide enough for a single tape. We want to replace those plastic spacers with 3D printed versions that have spacing for holding DVD and Blu-ray disks. The shelf that holds the spacers is 400 mm deep. Our rail of spacers will look something like this.

Fusion 360 Tip - Parameters with Rectangular Patterns

The goal is to design a single section (as shown in red) and then pattern that section as many times as we need to fill our 400 mm shelf.

Why parameters?

Using parameters for this design will make it easier to make changes to the dimensions and will allow us to easily adapt this model for other applications. By editing the parameters for things like height, width, length, spacing, etc. you can quickly scale this model to suit your needs.


Create the parameters

For this model, we’ll create and set starting values for the following user parameters:

NameUnitExpressionValueComments
Heightmm35 mm35.00Inside height of the divider section.
Widthmm25 mm25.00Inside width from back wall to front edge.
Thicknessmm2 mm2.00Back wall and base thickness.
Divider_Radiusmm3.5 mm3.50Radius of arc at top of divider wall.
Spacingmm16 mm16.00Space between arcs at the top of the divider.
Overall_Lengthmm200 mm200.00The total length of all sections.
Pattern_SpacingmmSpacing + Divider_Radius * 223Calculated – this is the spacing we need for the rectangular pattern tool so each section lines up with the next one.
Pattern_Repeat[none] (1)ceil(Overall_Length / Pattern_Spacing)9Calculated – this is how many times we need to repeat the pattern to fit our overall length. This is rounded up to the next whole section.
Trim_to_FitmmPattern_Spacing * Pattern_Repeat – Overall_Length + 0.001 mm (2)7.001Calculated – because we’re rounding up the pattern repeat, this is the amount we need to trim off our first section so the overall length is correct.
(1) It is important to set the units to “none” for this parameter since the repeat value is not a measurement. If set to mm, an error is thrown when applying it to the rectangular pattern tool later.
(2) .001 is added to this value so it can never be zero. This value is used for an extrude cut and zero is invalid for that operation. Adding this small amount will be virtually undetectable in our final model and 3D print.

Design Steps

This tutorial won’t cover the details of this particular sketch. The basic steps will be the same for most applications.

  1. Create the body you want to pattern
  2. Create a rectangular pattern to fill the Overall_Length
  3. Create an offset plane that is Trim_To_Fit distance away from the start of the main body
  4. Extrude cut from the start of the main body to the offset plane so the Overall_Length is your desired result

Fusion 360 Tip - Parameters with Rectangular Patterns
A sketch, 2 extrudes, and a fillet operation created this body.
Fusion 360 Tip - Parameters with Rectangular Patterns
Fusion 360 Tip - Parameters with Rectangular Patterns
Overall_Length (200 in this example) is rounded up to the next whole section.
Fusion 360 Tip - Parameters with Rectangular Patterns
Fusion 360 Tip - Parameters with Rectangular Patterns
The offset plane is positioned -7 mm from the end of the main body so we equal the Overall_Length of 200 mm.
Fusion 360 Tip - Parameters with Rectangular Patterns
Fusion 360 Tip - Parameters with Rectangular Patterns
Fusion 360 Tip - Parameters with Rectangular Patterns

Since I don’t have a printer big enough to create the entire 400 mm length, I have set the Overall_Length to 200 mm and will print 2 sections for each side of the shelf. 

This creates a small problem, however. Notice that the Overall_Length (200 mm) is not evenly divisible by the Pattern_Repeat (9), creating a need for a Trim_To_Fit value of 7 mm. You can see these values in the table of parameters above.

Depending on your specific needs, there are a couple of ways to work around this problem. For this project, 400 mm is the maximum length of spacers I can use. I really don’t want any partial sections, so I will skip the steps that create the offset plane and trim cut so I don’t end up with a partial section. We don’t need to delete those steps. We can simply suppress those features on the timeline, leaving them available to use if we do need them later.

Right click the feature you want to suppress on the timeline and then choose “Suppress Features” on the context menu.

Fusion 360 Tip - Parameters with Rectangular Patterns

Fusion 360 Tip - Parameters with Rectangular Patterns

This leaves me with a part that is not trimmed to the offset plane and is 207 mm long.

Fusion 360 Tip - Parameters with Rectangular Patterns

My new max length is now 193 mm. After changing my Overall_Length to 193 mm, this is the result.

to be continued…